Cold-Start Data Selection for Better Few-shot Language Model Fine-tuning: A Prompt-based Uncertainty Propagation Approach

Source: Acl 2023 Advisor: JIA-LING KOH Speaker: FAN-CHI-YU Date:2023/08/07

Outline

- Introduction
 - Prompt-base Tuning
 - Active learning
 - Cold Start Data Selection
- Method
 - Uncertainty Estimation with Prompt
 - Uncertainty Propagation for Data Utility Estimation
 - Partition-then-rewrite
- Experiment
 - Baseline
 - Ablation Study
 - label efficiency
- Conclusion

Introduction

Introduction(Prompt-base Tuning)

Choose a label word mapping, which maps task labels to individual words

Introduction(Active learning)

• Active learning (AL) aims at reducing labeling effort by identifying the **most valuable unlabeled** data points from a large pool.

Introduction(Cold Start Data Selection)

We have **only unlabeled data** and **zero initial labels**, and need to design acquisition functions to effectively query samples for PLM fine-tuning

2. Uncertainty Propagation

3. Partition-then-rewrite (PTR)

Algorithm 1: Process of PATRON Strategy.

Input: Unlabeled samples \mathcal{X}_u ; Pre-trained LM $\mathcal{M} = f(\cdot; \theta)$, number of acquired samples B, the number of iterations T (T=2 in this work).

// Step 1: Uncertainty Propagation for Utility Estimation.

1a. Calculate uncertainty for samples $x \in \mathcal{X}_u$ with prompts based on Eq. (5).

1b. Estimate uncertainty \hat{u}_{prop} with Eq. (6) and (7).

// Step 2: Predict-then-propagate (PTR) for Diversity
Promoting Selection.

2a. Run K-Means on \mathcal{X}_u with k=B until convergence.

2b. Select initial sample set $Q^{(0)}$ based on Eq. (8).

for $t = 1, 2, \cdots, T$ do

2c. Building the additional KNN graph to obtain \mathcal{X}_{c-KNN} with Eq. (9).

2d. Update $Q^{(t)}$ by optimizing the selected sample within each cluster \tilde{q} with Eq. (10).

Output: The final selected labeled data $\mathcal{Q}^{(T)}$.

Uncertainty Estimation with Prompt

PLM probability problematic; tackle via contextualized label word priors calculation.

Sentence *x*

Best movie of this year.

Prompt $\mathcal{T}(x)$

Best movie of this year. It was [MASK].

 $p(y \mid x) = p([MASK] = \mathcal{V}(y) \mid \mathcal{T}(x))$ $= \frac{\exp\left(\boldsymbol{w}_{\mathcal{V}(y)}^{T} \boldsymbol{h}_{\text{[MASK]}}\right)}{\sum_{y' \in \mathcal{Y}} \exp\left(\boldsymbol{w}_{\mathcal{V}(y')}^{T} \boldsymbol{h}_{\text{[MASK]}}\right)}$ (1) $= \bigcup_{i \in \{1,2,\dots,c\}} \operatorname{Top-k}_{x \in \mathcal{D}_u} p(y_i | x).$ $\mathcal{S} =$ 2) $P(v) \approx \frac{1}{|\mathcal{S}|} \sum_{x \in \mathcal{S}} P_{\mathcal{M}} \left([\mathsf{MASK}] = v \mid x \right),$ (3)

1. Uncertainty Estimation with Prompts

Uncertainty Estimation with Prompt

• PLM probability problematic; tackle via contextualized label word priors calculation.

1. Uncertainty Estimation with Prompts

Uncertainty Estimation with Prompt

When sample selection yields suboptimal results, calibration is used to improve the pseudo labels

Algorithm 1: Process of PATRON Strategy.

- **Input:** Unlabeled samples \mathcal{X}_u ; Pre-trained LM $\mathcal{M} = f(\cdot; \theta)$, number of acquired samples B, the number of iterations T (T=2 in this work).
- *// Step 1*: *Uncertainty Propagation for Utility Estimation.*
- **1a**. Calculate uncertainty for samples $x \in \mathcal{X}_u$ with prompts based on Eq. (5).

1b. Estimate uncertainty \hat{u}_{prop} with Eq. (6) and (7).

II **Step 2**: Predict-then-propagate (PTR) for Diversity Promoting Selection.

2a. Run K-Means on \mathcal{X}_u with k=B until convergence.

2b. Select initial sample set $Q^{(0)}$ based on Eq. (8).

for $t = 1, 2, \cdots, T$ do

- **2c**. Building the additional KNN graph to obtain \mathcal{X}_{c-KNN} with Eq. (9).
- **2d**. Update $Q^{(t)}$ by optimizing the selected sample within each cluster \tilde{q} with Eq. (10).

Output: The final selected labeled data $Q^{(T)}$.

Uncertainty Propagation for Data Utility Estimation

Result in **higher propagated uncertainty**, indicating the PLMs are uncertain about the **surrounding regions** around the sample.

2. Uncertainty Propagation

$$\kappa(x_i, x_j) = \exp\left(-\rho \|\mathbf{z}_i - \mathbf{z}_j\|_2^2\right), \quad (6)$$

$$\operatorname{prop}(x) = u(x) + \frac{\sum_{x_i \in \mathcal{X}_{\mathrm{KNN}}(x)} \kappa(x, x_i) \cdot u(x_i)}{|\mathcal{X}_{\mathrm{KNN}}(x)|}.$$

Algorithm 1: Process of PATRON Strategy.

Input: Unlabeled samples \mathcal{X}_{u} ; Pre-trained LM $\mathcal{M} = f(\cdot; \theta)$, number of acquired samples B, the number of iterations T (T=2 in this work). // Step 1: Uncertainty Propagation for Utility Estimation. **1a**. Calculate uncertainty for samples $x \in \mathcal{X}_u$ with prompts based on Eq. (5). **1b**. Estimate uncertainty \hat{u}_{prop} with Eq. (6) and (7). // Step 2: Predict-then-propagate (PTR) for Diversity **Promoting Selection. 2a.** Run K-Means on \mathcal{X}_{μ} with k=B until convergence. **2b**. Select initial sample set $Q^{(0)}$ based on Eq. (8). for $t = 1, 2, \dots, T$ do **2c**. Building the additional KNN graph to obtain \mathcal{X}_{c-KNN} with Eq. (9). **2d**. Update $Q^{(t)}$ by optimizing the selected sample within each cluster \tilde{q} with Eq. (10).

Output: The final selected labeled data $Q^{(T)}$.

Method: Partition-then-rewrite(PTR)

- Diversity-Promoting Data Selection
- **K-Means** clustering partitions pool D_u into diverse clusters based on embeddings.

$$\overline{\mathbf{Z}_{i}} = \frac{1}{|\mathcal{C}_{i}|} \sum_{x_{j} \in \mathcal{C}_{i}} x_{j} \in \mathcal{C}_{i}$$
3. Partition-then-rewrite (PTR)
$$\overline{\mathbf{Z}_{i}} = \frac{1}{|\mathcal{C}_{i}|} \sum_{x_{j} \in \mathcal{C}_{i}} x_{j} \in \mathcal{C}_{i}$$

$$q_{i} = \underset{x_{j} \in \mathcal{C}_{i}}{\operatorname{argmax}} \left(\widehat{u}_{\text{prop}}(x_{j}) - \beta \| \mathbf{z}_{j} - \overline{\mathbf{z}}_{i} \|_{2}^{2} \right), \quad (8)$$

Algorithm 1: Process of PATRON Strategy. **Input:** Unlabeled samples X_u ; Pre-trained LM

- $\mathcal{M} = f(\cdot; \theta)$, number of acquired samples B, the number of iterations T (T=2 in this work).
- // **Step 1**: Uncertainty Propagation for Utility Estimation.
- **1a**. Calculate uncertainty for samples $x \in \mathcal{X}_u$ with prompts based on Eq. (5).
- **1b**. Estimate uncertainty \hat{u}_{prop} with Eq. (6) and (7).
- // Step 2: Predict-then-propagate (PTR) for Diversity
 Promoting Selection.
- **2a**. Run K-Means on \mathcal{X}_u with k=B until convergence.

2b. Select initial sample set $Q^{(0)}$ based on Eq. (8).

for $t = 1, 2, \cdots, T$ do

2c. Building the additional KNN graph to obtain \mathcal{X}_{c-KNN} with Eq. (9).

2d. Update $Q^{(t)}$ by optimizing the selected sample within each cluster \tilde{q} with Eq. (10).

Output: The final selected labeled data $\mathcal{Q}^{(T)}$.

Method: Partition-then-rewrite (PTR)

- Samples can still be very close to other selected samples in adjacent clusters, leading to limited overall diversity.
- Prevent samples in adjacency clusters from being overly close.

$$\mathcal{X}_{\text{c-KNN},i} = \text{KNN}(q_i, \mathcal{Q}).$$
 (9)

$$\widetilde{q}_{i} = \underset{x_{j} \in \mathcal{C}_{i}}{\operatorname{argmax}} \left(\widehat{u}_{\text{prop}}(x_{j}) - \beta \| \mathbf{z}_{j} - \overline{\mathbf{z}}_{i} \|_{2} - \gamma \sum_{q_{k} \in \mathcal{X}_{\text{c-knn},i}} \left[m - \| \mathbf{z}_{j} - \mathbf{z}_{k} \|_{2} \right]_{+} \right), \quad (10)$$

Experiment

Experiment (Dataset)

Dataset	Domain	Classes c	#Unlabeled	#Test	Туре	Template	Label words
IMDB	Movie Review	2	25k	25k	sentiment	$\langle S \rangle$. It was [MASK].	terrible, great
Yelp-full	Restaurant Review	2	560k	38k	sentiment	$\langle S \rangle$. It was [MASK].	terrible, bad, okay, good, great
AG News	News	4	120k	7.6k	News Topic	[MASK] News: $\langle S \rangle$	World, Sports, Business, Tech
Yahoo! Answers	Web QA	10	300k	60k	QA Topic	[Category: [MASK]] $\langle S \rangle$	Society, Science, Health, Education, Computer,
							Sports, Business, Entertainment, Relationship, Politics
DBPedia	Wikipedia Text	14	420k	70k	Wikipedia Topic	$\langle T \rangle \langle S \rangle \langle T \rangle$ is a [MASK]]	Company, School, Artist, Athlete, Politics,
							Transportation, Building, Mountain, Village,
							Animal, Plant, Album, Film, Book
TREC	Web Text	6	5k	0.6k	Question Topic	$\langle S \rangle.$ It was [MASK].	Expression, Entity, Description, Human, Location, Number

Experiment (Baseline : Uncertainty-based)

Methods focus on choosing **hard samples** without considering the sample diversity, **leading to imbalanced** label distribution

- Uncertainty : Use the highest uncertainty by entropy
- CAL : KL div Predict the prediction of itself and its neighbors

Experiment (Baseline : Diversity-based)

Tend to select **diverse yet** easy examples for the model

• **Coreset** : Samples largest distance between a data point and its nearest center is minimized.

Experiment (Baseline : Diversity-based)

Tend to select **diverse yet** easy examples for the model

- **Coreset** : Samples largest distance between a data point and its nearest center is minimized.
- **BERT-KM** : Each cluster that is closest to the center of the cluster
- **Margin-KM** : Minimum margin between the two most likely probabilities from each cluster
- **ALPS** : Uses the masked language model (MLM) loss of BERT to generate surprisal embeddings to query samples.
- **TPC** : Calculates the density for each data point, and then selects those with the highest density from each cluster

Experiment (Baseline)

			Uncertainty	-based	Diversity-based						
Task	С	B	Random	Uncertainty	CAL	BERT-KM	Coreset	Margin-KM	ALPS	TPC	PATRON (Ours)
Yahoo! Ans.	10	32 64 128	$\begin{array}{c} 58.5 \pm 4.0 \\ 62.2 \pm 1.0 \\ 64.7 \pm 1.3 \end{array}$	55.0 ± 3.0 60.4 ± 0.7 63.0 ± 1.2	$54.0 \pm 1.5 \\ 58.6 \pm 1.3 \\ 60.1 \pm 1.8$	$\begin{array}{c} 61.4 \pm 1.8 \\ 62.8 \pm 0.7 \\ 65.4 \pm 1.2 \end{array}$	$\begin{array}{c} 55.3 \pm 2.1 \\ 59.5 \pm 0.7 \\ 62.7 \pm 1.0 \end{array}$	$ \begin{vmatrix} 57.8 \pm 2.6 \\ 58.8 \pm 1.2 \\ 65.4 \pm 0.7 \end{vmatrix} $	$\frac{61.9 \pm 0.9}{63.3 \pm 0.8} \\ \overline{65.9 \pm 0.7}$	$57.0 \pm 1.6 \\ 60.8 \pm 0.7 \\ \underline{66.2 \pm 0.6}$	$ \begin{vmatrix} 63.2 \pm 1.2^* \\ 66.2 \pm 0.3^{**} \\ 67.6 \pm 0.5^{**} \end{vmatrix} $
TREC	6	32 64 128	$\begin{array}{c} 69.4 \pm 2.8 \\ 75.4 \pm 1.4 \\ 85.0 \pm 2.1 \end{array}$	66.4 ± 3.5 68.0 ± 2.3 78.8 ± 2.0	$\begin{array}{c} 41.6 \pm 2.5 \\ 49.8 \pm 1.5 \\ 67.2 \pm 2.7 \end{array}$	$\begin{array}{c} 68.1 \pm 2.3 \\ 78.8 \pm 2.0 \\ 85.6 \pm 1.8 \end{array}$	$\begin{array}{c} 61.0 \pm 4.6 \\ 78.6 \pm 1.3 \\ 84.2 \pm 2.4 \end{array}$	$ \begin{vmatrix} 64.8 \pm 2.7 \\ 74.2 \pm 1.4 \\ 78.0 \pm 1.9 \end{vmatrix} $	$\frac{72.1 \pm 2.3}{80.6 \pm 0.9}$ $\frac{86.5 \pm 2.0}{86.5 \pm 2.0}$	$\begin{array}{c} 59.5 \pm 3.3 \\ 77.8 \pm 1.5 \\ 80.6 \pm 1.4 \end{array}$	$\begin{array}{c} \textbf{76.1} \pm \textbf{1.1}^{**} \\ \textbf{81.9} \pm \textbf{1.3}^{*} \\ \textbf{88.9} \pm \textbf{1.0}^{**} \end{array}$

Diversity-based methods generally achieve **better performance** over the uncertainty-based strategies

Experiment (Ablation Study)

The **SimCSE** embeddings with the prompt-based pseudo labels and improve the performance significantly.

(a) Ablation Study

Experiment (label efficiency)

- PATRON improves the label efficiency over baselines by **3.4%–6.9%** on average.
- With 512 labels as the budget, PATRON achieves better performance with 2X~2.5 labels(**Yahoo1280 labels**,**TREC 1024 labels**)

Conclusion

• By leveraging prompts, we can **distill the task-specific knowledge** from

the frozen PLM to guide data acquisition.

- It 's possible to extend our method to (**PET,LMBFF**)tasks.
- This paper achieve sample **representativeness** and **diversity**.