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Introduction



Introduction(Prompt-base Tuning]

Choose a label word mapping , which maps task labels to individual words
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Introduction(Active learning)

e Active learning (AL) aims at reducing labeling effort by identifying the
most valuable unlabeled data points from a large pool.
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Introduction( Cold Start Data Selection)

We have only unlabeled data and zero initial labels, and need to design
acquisition functions to effectively query samples for PLM fine-tuning
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Method

Sentence x
Best movie of this year.
Prompt T'(x)
Best movie of this year. It was [MASK].
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Pseudo Label ~ Uncertainty

1. Uncertainty Estimation with Prompts
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2. Uncertainty Propagation
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3. Partition-then-rewrite (PTR)



Method

Algorithm 1: Process of PATRON Strategy.

Input: Unlabeled samples X, ; Pre-trained LM
M = f(-;0), number of acquired samples B,
the number of iterations 7' (7'=2 in this work).
/I Step 1: Uncertainty Propagation for Utility
Estimation.

1a. Calculate uncertainty for samples x € X, with
prompts based on Eq. (5).

Ib. BEstimate uncertainty uprop With Eq. (6) and (/).
/] Step 2: Predict-then-propagate (PTR) for Diversity
Promoting Selection.
2a. Run K-Means on &, with k=B until convergence.
2b. Select initial sample set Q) based on Eq. (8).
fort=1,2,---,7T do
2¢. Building the additional KNN graph to obtain
Xexknn With Eq. (9).
2d. Update Q*) by optimizing the selected
sample within each cluster ¢ with Eq. (10).

Output: The final selected labeled data Q7.




Uncertainty Estimation with Prompt

e PLM probability problematic; tackle via contextualized label word priors

calculation.
p(y | =) = p([MASK] = V(y) | T (x))

Sentence x exp (w;l/:('g, )hEMASKJ) (1)
Best movie of this year. D reyy €XPp (w\{ o )h[MASK])
Prompt T'(x)
Best movie of this year. It was [MASK]. S — ' | Top_k p(yz | aj‘) ] (2)
+1 . CCED
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Pseudo Label ~ Uncertainty
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Uncertainty Estimation with Prompt

e PLM probability problematic; tackle via contextualized label word priors

calculation.

Sentence x

Best movie of this year.
Prompt T'(x)

Best movie of this year. It was [MASK].

— *(pos) |
|5

Pseudo Label ~ Uncertainty

1. Uncertainty Estimation with Prompts

Top-k p(y;|z)
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Uncertainty Estimation with Prompt

When sample selection yields suboptimal results, calibration is used to improve

| ~ _ ( plyilr) ) j & plyl) \
C\P(V(y) |

contextualized priors \‘]

-
w(z) = —»  7;log 7. (5)
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Method

Algorithm 1: Process of PATRON Strategy.

Input: Unlabeled samples X, ; Pre-trained LM
M = f(-;0), number of acquired samples B,

the number of iterations 7' (7'=2 in this work).

/I Step 1: Uncertainty Propagation for Utility
Estimation.
1a. Calculate uncertainty for samples x € X, with

prompts based on Eqg. (5).

1b. Estimate uncertainty yrop With Eq. (6) and (7).

77 Step 2: Predict-then-propagate (PTR) jor Diversity
Promoting Selection.

2a. Run K-Means on &, with k=B until convergence.

2b. Select initial sample set Q) based on Eq. (8).

fort=1,2,---,7T do

2¢. Building the additional KNN graph to obtain
Xexknn With Eq. (9).

2d. Update Q*) by optimizing the selected
sample within each cluster ¢ with Eq. (10).

Output: The final selected labeled data Q7.

13



Method:
Uncertainty Propagation for Data Utility Estimation

Result in higher propagated uncertainty, indicating the PLMs are uncertain
about the surrounding regions arqund the sample.
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Method

Algorithm 1: Process of PATRON Strategy.

Input: Unlabeled samples X, ; Pre-trained LM
M = f(-;0), number of acquired samples B,

the number of iterations 7' (7'=2 in this work).

/I Step 1: Uncertainty Propagation for Utility
Estimation.

1a. Calculate uncertainty for samples x € X, with
prompts based on Eq. (5).

1b. Estimate uncertainty yrop With Eq. (6) and (7).

/] Step 2: Predict-then-propagate (PTR) for Diversity
Promoting Selection.

[_Za. Run K-Means on X,, with k=D until convergenc
2b. Select initial sample set Q(O) based on Eqg. (8).
fort=1,2,--- ,T do

2c¢. Building the additional KNN graph to obtain
Xexknn With Eq. (9).

2d. Update Q*) by optimizing the selected
sample within each cluster ¢ with Eq. (10).

Output: The final selected labeled data Q7.
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Method: Partition-then-rewrite(PTR)

e Diversity-Promoting Data Selection
e K-Means clustering partitions pool Du into diverse clusters based on
embeddings.

, — b

g = argmas (y55) - 812 - 53, ®
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Method

Algorithm 1: Process of PATRON Strategy.

Input: Unlabeled samples X, ; Pre-trained LM
M = f(-;0), number of acquired samples B,
the number of iterations 7' (7'=2 in this work).

/I Step 1: Uncertainty Propagation for Utility

Estimation.
1a. Calculate uncertainty for samples x € X, with
prompts based on Eq. (5).
1b. Estimate uncertainty yrop With Eq. (6) and (7).
/] Step 2: Predict-then-propagate (PTR) for Diversity
Promoting Selection.
2a. Run K-Means on &, with k=B until convergence.
2b. Select initial sample set Q(°) based on Eq. (8).
(fort =1,2,... T do
2c¢. Building the additional KNN graph to obtain
Xexknn With Eq. (9).
2d. Update Q) by optimizing the selected
sample within each cluster ¢ with Eq. (10).

Output: The final selected labeled data Q7.
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Method: Partition-then-rewrite (PTR)

e Samples can still be very close to other selected samples in adjacent
clusters, leading to limited overall diversity.

e Prevent samples in adjacency clusters from being overly close.

XeknN,i = KNN(g;, Q). 9)

o~

q; — argimax (aprOp(ajj) — B “Zj = Zi“z

o1, o ol z; €C;
i (10)
\:_____\_',/ — Y E [m — ”Zj — ZL ||2] _|_)7
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Experiment



Experiment (Dataset)

Dataset Domain Classes ¢ #Unlabeled ~#Test Type Template Label words
IMDB Movie Review 2 2k Bk sentiment  (S).Itwas [MASK]. temible, great
Yelp-full Restaurant Review 2 560k 38k sentiment  (S). It was [MASK], terrible, bad, okay, good, great
AG News News R 120k 76k  NewsTopic ~ [MASK] News: (S) World, Sports, Business, Tech
Yahoo! Answers  Web QA 10 300k 60k QATopic  [Category: [MASK]] (S)  Society, Science, Health, Education, Computer,
Sports, Business, Entertainment, Relationship, Politics
DBPedia Wikipedia Text 14 40k 70k Wikipedia Topic (T)(S).(T)isa [MASK]) Company, School, Artist, Athlete, Politics,
Transportation, Building, Mountain, Village,
Animal, Plant, Album, Film, Book
TREC Web Text 6 5k 0.6k Question Topic (S). It was [MASK]. Expression, Entity, Description, Human, Location, Number
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Experiment (Baseline : Uncertainty-based)

Methods focus on choosing hard samples without considering the
sample diversity, leading to imbalanced label distribution

e Uncertainty : Use the highest uncertainty by entropy
e CAL : KL div Predict the prediction of itself and its neighbors
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Experiment (Baseline : Diversity-bhased)

Tend to select diverse yet easy examples for the model

e Coreset: Samples largest distance between a data point and its

nearest center is minimized.
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Experiment (Baseline : Diversity-bhased)

Tend to select diverse yet easy examples for the model

e Coreset: Samples largest distance between a data point and its nearest
center is minimized.

e BERT-KM : Each cluster that is closest to the center of the cluster

e Margin-KM : Minimum margin between the two most likely probabilities from
each cluster

e ALPS: Uses the masked language model (MLM) loss of BERT to generate
surprisal embeddings to query samples.

e TPC: Calculates the density for each data point, and then selects those with
the highest density from each cluster
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Experiment (Baseline)

Uncertainty-based Diversity-based

Task | ¢ |B|| Random | Uncertainty ~CAL |BERTKM Coreset | MarginKM ALPS  TPC | PATRON (Ours)

30 [585+40] 55.0430f 54015 614+ 18\553 421 | 578426 619409 57.0+16] 632+12*

Yahoo! Ans. | 10 64 | 62210 604207 586413 | 628407 |595+07| 588412 633508 60807 662+ 03"
128 | 64713 ] 630412 60118 654212 |627£10] 654207 B59L07 662+06| 67.6+05*

30 1694428 664435 416+25( 681423 1610L46] 648427 721423 595+33| 761+ 1.1

TREC | 6 64 |754+14] 68023 498+ 15| 788=20 |786+13| 742414 806L09 778+15| 819413

128|850 2.1 | 788+20\ 672427 856+ 18842424 | 780419 865220 806+ 14| 889+10"

Diversity-based methods generally achieve better performance over the
uncertainty-based strategies



Experiment (Ablation Study)

The SimCSE embeddings with the prompt-based pseudo labels and improve

the performance significantly.
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Experiment (1abel efficiency)
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PATRON improves the label efficiency over baselines by 3.4%-6.9% on
average.

With 512 labels as the budget, PATRON achieves better performance with
2X~2.5 labels(Yahoo1280 labels, TREC 1024 labels)
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Conclusion

e By leveraging prompts, we can distill the task-specific knowledge from
the frozen PLM to guide data acquisition.
e |t's possible to extend our method to (PET,LMBFF)tasks.

e This paper achieve sample representativeness and diversity.
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