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Introduction
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Introduction(Prompt-base Tuning)
Choose a label word mapping , which maps task labels to individual words

4

Prompt-based tuning includes two key 
points:
● Template design
● Verbalizer design



Introduction(Active learning)
● Active learning (AL) aims at reducing labeling effort by identifying the 

most valuable unlabeled data points from a large pool.
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Introduction( Cold Start Data Selection)
 We have only unlabeled data and zero initial labels, and need to design 
acquisition functions to effectively query samples for PLM fine-tuning
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Uncertainty Estimation with Prompt
● PLM probability problematic; tackle via contextualized label word priors 

calculation.
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Uncertainty Estimation with Prompt
● PLM probability problematic; tackle via contextualized label word priors 

calculation.
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Uncertainty Estimation with Prompt
When sample selection yields suboptimal results, calibration is used to improve 
the pseudo labels
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contextualized priors 
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Method: 
Uncertainty Propagation for Data Utility Estimation
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 Result in higher propagated uncertainty, indicating the PLMs are uncertain 
about the surrounding regions around the sample.



Method
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Method: Partition-then-rewrite(PTR)
● Diversity-Promoting Data Selection
● K-Means clustering partitions pool Du into diverse clusters based on 

embeddings.
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Method
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Method: Partition-then-rewrite (PTR)
● Samples can still be very close to other selected samples in adjacent 

clusters, leading to limited overall diversity.

● Prevent samples in adjacency clusters from being overly close.
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Experiment
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Experiment (Dataset)
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Experiment (Baseline : Uncertainty-based)
Methods focus on choosing hard samples without considering the 
sample diversity, leading to imbalanced label distribution 

● Uncertainty : Use the highest uncertainty by entropy 

● CAL : KL div Predict the prediction of itself and its neighbors
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Experiment (Baseline : Diversity-based)
Tend to select diverse yet easy examples for the model

● Coreset : Samples largest distance between a data point and its 

nearest center is minimized.

●
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Experiment (Baseline : Diversity-based)
Tend to select diverse yet easy examples for the model

● Coreset : Samples largest distance between a data point and its nearest 
center is minimized.

● BERT-KM : Each cluster that is closest to the center of the cluster
● Margin-KM : Minimum margin between the two most likely probabilities from 

each cluster
● ALPS :  Uses the masked language model (MLM) loss of BERT to generate 

surprisal embeddings to query samples.
● TPC :  Calculates the density for each data point, and then selects those with 

the highest density from each cluster
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Experiment (Baseline)

Diversity-based methods generally achieve better performance over the 
uncertainty-based strategies
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 Experiment (Ablation Study)
The SimCSE embeddings with the prompt-based pseudo labels and improve 
the performance significantly.
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 Experiment (label efficiency)
● PATRON improves the label efficiency over baselines by 3.4%–6.9% on 

average.
● With 512 labels as the budget, PATRON achieves better performance with 

2X~2.5 labels(Yahoo1280 labels,TREC 1024 labels)
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Conclusion
● By leveraging prompts, we can distill the task-specific knowledge from 

the frozen PLM to guide data acquisition.

● It ‘s possible to extend our method to (PET,LMBFF)tasks.

● This paper achieve sample representativeness and diversity.
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